Panel Closure Redesign Planned Change Request

Review of Planned Change Request Submittal to the Environmental Protection Agency

10-18-2011

Thomas Klein – URS/RES

Panel Closure Redesign Planned Change Request Topics

- CCA Design and current status
- Concerns with Option D design
- Proposed new design: Run-of-Mine Panel Closure (ROMPC)
- Analysis
 - Operational Analysis
 - Structural Analysis
 - Air Flow Analysis
 - Long-Term Performance of the new design (PA)
- Conclusion

CCA Design and Current Status

- Final Certification Decision for 40 CFR 194 (EPA, 1998a) established Condition 1 under section §194.14(b) identifying Option D with Salado Mass Concrete (SMC) for panel seal design.
- Section 3.3.2 of the Compliance Certification Application (CCA)(DOE, 1996) states: "The panel closure system was not designed or intended to support long-term repository performance."
- Current Status
 - Panels 1 & 2: Block Wall
 - Panels 3 & 4: Ventilation/Monitoring Bulkheads
 - Hydrogen and Methane monitoring
 - Panel 5: Block Wall being installed

Concerns with Option D

- Cannot manufacture SMC to the specifications in the CCA while meeting the design requirements of the Option D design
- Option D design is very complex to implement
- Option D design is significantly more expensive than the proposed design
- Hydrogen and Methane monitoring data shows no need for explosion/isolation wall

Proposed New Design Run-of-Mine Panel Closure(ROMPC)

- One bulkhead at each end
 - Panels with existing block walls will have only one bulkhead
- 100 foot backfill of Run-of-Mine (ROM) salt between bulkheads
 - ROM salt will be compacted in layers to:
 - Increase air flow resistance
 - Expedite the effects of salt creep
 - Reduce time needed for ROM salt to consolidate to a condition approaching intact salt

Typical Bulkhead Design

Not to Scale

Typical Bulkhead (Photo)

Typical ROMPC with One Bulkhead and a Block Wall

- 1. Crushed Salt Layers 100' 0" minimum length and minimum thicknesses as indicated.
- 2. Salt Layers can be inclined as long as minimums maintained.
- 3. Lines through Run of Mine Salt Backfill show possible initial layering of backfill.

Typical ROMPC with Two Bulkheads

- 1. Crushed Salt Backfill Layers 100' 0" minimum length and minimum thicknesses as indicated..
- 2. Salt layers can be inclined as long as minimums maintained.
- 3. Lines through Run of Mine Salt show possible initial layering of backfill.

Analysis

- Operational Analysis
 - Structural Analysis
 - By use of compaction void space development is eliminated
 - Permeability
 - FLAC3D geo-mechanical modeling performed

Air Flow Permeability of Consolidated salt as a Function of Fractional Density

Long-Term Performance (PA)

PC3R PA and PABC-2009 Statistics on the Overall Mean for Total Normalized Releases in EPA Units at Probabilities of 0.1 and 0.001

Probability	Analysis	Mean Total Release	90 th Percentile	Lower 95% CL	Upper 95% CL	Release Limit
0.1	PC3R PA	0.09	0.16	0.09	0.10	1
	PABC-2009	0.09	0.16	0.09	0.10	1
0.001	PC3R PA	0.89	1.00	0.34	1.41	10
	PABC-2009	1.10	1.00	0.37	1.77	10

Long-Term Performance (PA)

PC3R PA and PABC-2009 Overall Mean CCDFs for Total Normalized Releases

Conclusion

- The revised design described in this PCR will enhance constructability and reduce the impacts on repository operations. A change in the design specified in Condition 1 of the Certification Decision (EPA, 1998a) is also required because of the problems in manufacturing SMC to the specifications in the CCA while meeting the design requirements of the Option D design.
- An analysis of the results of earlier PAs suggests that this revised design will have essentially the same impact on long-term performance as the Option D design.

